数 学 Ⅱ

(全 問 必 答)

第1問 (配点 30)

(1)

(1) x > 0 とする。 $\log_3 x$ を、 2 を底とする対数を用いて表そう。

 $t = \log_3 x$ とおくと、 **ア** が成り立つ。これにより、 $\log_2 x =$ **イ** となるので、t = **ウ** が得られる。すなわち、 $\log_3 x =$ **ウ** である。

アの解答群

- $0 \quad 3 = t^{x}$
- (1) $3 = x^t$
- (2) $x = 3^t$

- **4** $t = 3^x$
- (5) $t = x^3$

イ の解答群

- $2 t \log_2 3$

ウの解答群

- $\log_2 \frac{3}{x}$

- (2) 底が異なる二つの対数について、それらの和と積の大小関係を考えよう。
 - (i) $x > 0 \ge U$

$$f(x) = \log_2 x + \log_3 x$$

$$g(x) = (\log_2 x) \cdot (\log_3 x)$$

とおく。不等式

を満たす x の値の範囲を調べる。

······ ①

f(x)とg(x)を、それぞれ2を底とする対数を用いて表すと

$$f(x) = A \log_2 x$$
, $g(x) = B(\log_2 x)^2$

となる。ここで

$$A = \boxed{\mathbf{I}}, \quad B = \boxed{\mathbf{J}}$$

である。 $X = \log_2 x$ とおくと,X のとり得る値の範囲は実数全体である。 X についての不等式 $AX > BX^2$ を満たす X の値の範囲は

である。

よって、①を満たすxの値の範囲は

である。

______ ~ [キ] の解答群(同じものを繰り返し選んでもよい。)

() 0

(1) 1

2 2

3 - 1

- **4** log₂ 3
- $\frac{1}{\log_2 3}$

- $(\log_2 3)^2$
- $8 1 + \log_2 3$

- $9 \frac{1}{1 + \log_2 3}$
- (a) $1 + \frac{1}{\log_2 3}$

(ii)
$$x > 0 \ge U$$

$$F(x) = \log_{\frac{1}{2}} x + \log_{\frac{1}{3}} x$$

$$G(x) = \left(\log_{\frac{1}{2}} x\right) \cdot \left(\log_{\frac{1}{3}} x\right)$$

とおく。不等式

$$F(x) > G(x)$$

を満たす x の値の範囲を調べる。

(1) と同様に考えると、 $\log_{\frac{1}{2}}x$ は 2 を底とする対数を用いて こと とませる。また、 $\log_{\frac{1}{3}}x$ も 3 を底とする対数を用いて表すことができる。

このことから、f(x)とg(x)を(i)で定めた関数とするとき、F(x)と G(x)をそれぞれf(x)またはg(x)を用いて表すと

となる。よって、2を満たすxの値の範囲は

であることがわかる。

(数学 II 第 1 問は次ページに続く。)

の解答群

- $\log_2 x$

サー, シーの解答群(同じものを繰り返し選んでもよい。)

- $\bigcirc f(x) \qquad \bigcirc -f(x) \bigcirc \frac{f(x)}{2} \qquad \bigcirc \frac{f(x)}{3} \qquad \bigcirc \frac{f(x)}{6}$

- § g(x) § -g(x) ⑦ $\frac{g(x)}{2}$ § $\frac{g(x)}{3}$ 9 $\frac{g(x)}{6}$

(数学 II 第 1 問は次ページに続く。)

[2] 花子さんは、三角関数の表を見て、角 θ が 90° に近づくときの $\tan \theta$ の値の変化に興味をもった。なお、表 1 は三角関数の表の一部である。

表 1

θ	$\tan \theta$
:	:
81°	6. 3138
82°	7. 1154
83°	8. 1443
:	:
89°	57. 2900
90°	_

そこで、 $0 < x < \frac{\pi}{4}$ を満たすx に対して、 $\tan\left(\frac{\pi}{2} - 2x\right)$ と $\tan\left(\frac{\pi}{2} - x\right)$ の値を比較してみることにした。

(数学 Ⅱ 第 1 問は次ページに続く。)

(1) $\tan 2x = \frac{\sin 2x}{\cos^2 x} = \frac{9}{\cos^2 x - \sin^2 x}$ より、分母と分子をそれぞれ $\cos^2 x$ で割ると

$$\tan 2 x = \boxed{\mathcal{F}}$$

となる。さらに $0 < \alpha < \frac{\pi}{2}$ を満たす α に対して、 $\tan(\frac{\pi}{2} - \alpha) = \frac{1}{\tan \alpha}$

が成り立つことから、 $\frac{\tan\left(\frac{\pi}{2}-2x\right)}{\tan\left(\frac{\pi}{2}-x\right)}$ は $\tan x$ を用いて

$$\frac{\tan\left(\frac{\pi}{2}-2x\right)}{\tan\left(\frac{\pi}{2}-x\right)} = \boxed{y}$$

と表せる。

タの解答群

- $0 \sin x$
- \bigcirc cos x
- $2 \sin x$

- $3 \quad 2\cos x$
- (a) $\sin^2 x$ (b) $2\sin^2 x 1$
- $\cos^2 x$
- $\bigcirc 2\cos^2 x 1$ $\bigcirc 2\sin x \cos x$

- \bigcirc 2 tan x
- $0 \frac{1}{2 \tan r}$
- \bigcirc $\tan^2 x$

- **6** $\frac{1-\tan^2 x}{2}$ **7** $\frac{2}{1-\tan^2 x}$ **8** $\frac{1+\tan^2 x}{2\tan x}$

(2) ① から、
$$0 < x < \frac{\pi}{4}$$
 のとき $\frac{\tan\left(\frac{\pi}{2} - 2x\right)}{\tan\left(\frac{\pi}{2} - x\right)}$ のとり得る値の範囲は

$$\boxed{\overline{\tau}} < \frac{\tan\left(\frac{\pi}{2} - 2x\right)}{\tan\left(\frac{\pi}{2} - x\right)} < \boxed{\blacktriangleright} \qquad \cdots \qquad 2$$

である。

テ,	 	の解答群(同じものを繰り返し選んでもよい。)

0	0	1	2 2	3 3
4	4	§ $\frac{1}{2}$	6 $\frac{1}{3}$	$0 \frac{1}{4}$

(3) 花子さんは、表 1 に載っていない $\tan 89.5^\circ$ の値を、② を用いて調べることにした。

$$0 < x < \frac{\pi}{4}$$
 のとき, $\tan\left(\frac{\pi}{2} - 2x\right) = \tan 89^\circ$ を満たす x は

である。

ネの解答群

0 30 未満

- ① 30以上40未満
- 2 40以上50未満
- 3 50以上60未満
- **4** 60以上70未満
- 5 70以上80未満
- 6 80以上90未満
- **⑦** 90 以上 100 未満
- 8 100以上110未満
- 9 110 以上

第2問 (配点 30)

 $f(x) = x^3 - 3x^2 + 6 \ge 3$

 $3 \le x \le 5$ の範囲において、f(x)はx = **キ** で最大値をとり、

x = 2 で最小値をとる。また、 $1 \le x \le 3$ の範囲において、f(x) は x = 2 で最大値をとり、x = 2 で最小値をとる。

(2) t を実数とし、 $t \le x \le t + 1$ の範囲における f(x) の最大値を M(t)、最小値を m(t) とおく。

M(t) = f(t+1)かつ m(t) = f(t) となるような t の値の範囲は

$$t \leq \boxed{\forall \flat}$$
, $\boxed{\lambda} \leq t$

である。また、M(t) = f(t)かつ m(t) = f(t+1) となるような t の値の範囲は

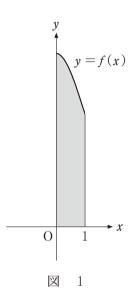
$$=$$
 $t \leq y$

であり、このとき M(t) - m(t) = f(t) - f(t+1) となることに注意すると、

をとることがわかる。

(3) $0 \le t \le 1$ とし、座標平面において 2 点(t, f(t))、(t, 0) を結んでできる線分を ℓ_1 とおく。t が $0 \le t \le 1$ の範囲を動くとき、 ℓ_1 が通過する部分を図示すると図 1 の灰色部分となる。ただし、境界 (境界線) を含む。なお、図 1 においては関数 y = f(x) のグラフの $0 \le x \le 1$ の部分を実線で表している。

このとき、図1の灰色部分の面積は ッテ である。



- (4) $g(x) = x^3 6x^2 + 6x + 2$ と し, 座 標 平 面 に お い て 2 点(t, f(t)), (t, g(t)) を結んでできる線分を ℓ_2 とおく。また,r を実数とし,実数 t が $r \le t \le r + 1$ の範囲を動くとき, ℓ_2 が通過する部分の面積を S とする。

ナの解答群

- 0 つねに正である
- ① つねに負である
- ② 正になることも、負になることも、0になることもある

ニの解答群

 $\oint_{r}^{r+1} g(x) dx$

- $\int_{r}^{r+1} \{-g(x)\} dx$

- **6** $\int_{x}^{r+1} \{g(x) f(x)\} dx$

(ii) Sを計算すると

$$S = f(r+1) - f(r) + 4$$

ヌの解答群

◎ 増加する

① 増加してから減少する

② 減少する

③ 減少してから増加する

4 一定である

第 3 問 (配点 20)

座標平面上に 2点 O(0,0), A(2,4) と点 P がある。

(i) m=1 のとき、Pの軌跡は直線

$$y = \frac{\boxed{\cancel{\texttt{D}}\mathbf{I}}}{\boxed{\cancel{\texttt{A}}}}x + \frac{\boxed{\cancel{\texttt{D}}}}{\boxed{\cancel{\texttt{A}}}}$$

である。この直線は直線 OA と ク。

クの解答群

⑥ 垂直で O を通る

① 平行で点(3,1)を通る

② 垂直でAを通る

- ③ 平行で点(0,4)を通る
- **④** 垂直で線分 OA の中点を通る
- ⑤ 一致する

(ii) $m = \sqrt{2}$ のとき、Pの軌跡は円

$$\left(x + \boxed{\tau}\right)^2 + \left(y + \boxed{\Box}\right)^2 = \boxed{\forall \flat}$$

(2)	$k \geq$	а	を実数の定数と	1,7
_/	$\kappa \subset$	· u		

$$AP^2 + k OP^2 = q \qquad \cdots$$

を考える。③において $k=-m^2$, q=0とすると②が得られる。③を満たす Pの軌跡について考えよう。

直線OAは「二」。

の解答群

- \bigcirc q の値によらず平行である \bigcirc q の値によらず垂直である
- ② q>0 のときのみ平行である ③ q>0 のときのみ垂直である
- **④** q=0 のときのみ平行である **⑤** q=0 のときのみ垂直である

(数学 Ⅱ 第 3 問は次ページに続く。)

(ii) k=1とする。このとき、Pの軌跡が円であるための必要十分条件として、 次の0~0のうち、正しいものは ヌ である。

ヌの解答群

- $\bigcirc q > 0$ $\bigcirc q > 2$ $\bigcirc q > 5$ $\bigcirc q > 10$

- (a) q = 0 (b) q = 2 (c) q = 5 (d) q = 10

- $\bigcirc 0 < q < 2$ $\bigcirc 0 = 2 < q < 5$ $\bigcirc 0 = 5 < q < 10$

第4間 (配点 20)

p, q を実数とし、複素数 α を $\alpha = p + qi$ とする。

(1) $\alpha - p = qi$ が成り立つので、この両辺を2乗することにより、 α は

$$a^2 - \boxed{7} a + \boxed{4} = 0$$

を満たすことがわかる。

- ┃の解答群(同じものを繰り返し選んでもよい。)

(1) 2 p

2 2 q

- (3) $(p^2 + q^2)$
- (a) $(p^2 q^2)$
- **6** $(q^2 p^2)$
- (2) $x^3 & x^2$ ア x + て割ったときの商を Q(x), 余りを R(x) とす ると, $Q(x) = x + \boxed{\dot{\mathbf{p}}}$, $R(x) = \boxed{\mathbf{I}} x - \boxed{\mathbf{f}}$ である。

 - **0** 2 p

(1) 2 q

(3 $p^2 - q^2$)

- (a) $(p^2 3q^2)$
- (a) $(2 p^3 + 2 pq^2)$ (b) $(2 p^2 q + 2 q^3)$

(数学 Ⅱ 第 4 問は次ページに続く。)

(3) 太郎さんと花子さんは、 α^3 が実数になるとき、 $p \geq q$ が満たす関係式について 話している。

太郎: $(p + qi)^3$ を展開すれば、 α^3 が実数になるとき、 $p \geq q$ が満たす関係 式がわかるね。

花子:(2)の結果を使っても、関係式が求められないかな。

(i) 太郎さんの求め方について考えてみよう。

満たすことがわかる。

カの解答群

- (1) $p^3 p^2 q i + p q^2 q^3 i$
- ② $p^3 + 3p^2q 3pq^2 q^3$ ③ $p^3 3p^2q + 3pq^2 q^3$
- (a) $p^3 + 3p^2qi 3pq^2 q^3i$
- **6** $p^3 3p^2qi + 3pq^2 q^3i$

の解答群

- $0 p^2 q q^3$
- $0 p^2 q q^3$
- 2 $p^3 3pq^2$

- 3 $p^3 pq^2$
- **4** $3p^2q q^3$
- (5) $-3p^2q-q^3$

(数学 II 第 4 問は次ページに続く。)

(ii)	花子さ,	んの求め	方につい	いて老え	てみよい	Š.
\II/	4F, J C /	コンマンンにひょ		$(\rightarrow (\rightarrow \rightarrow \land)$	(0 7 0	10

 $P(x) = x^2 - \boxed{r}x + \boxed{1}$ とする。(2)と同じように、 x^3 をP(x)で割ったときの商をQ(x)、余りをR(x)とすると、 $\alpha^3 = \boxed{2}$ であることがわかる。したがって、実数 ℓ 、m、n を用いて $Q(x) = x + \ell$ 、R(x) = mx + nと表すと、 α^3 が実数になるとき、 $\boxed{r} = 0$ となることがわかる。

このことと(2)より、 $p \ge q$ が満たす関係式は $\boxed{ + } = 0$ とわかる。

ケの解答群

() ℓp	① mp	(2) np	
3 \(\ell q	$\bigcirc mq$	⑤ nq	

(4) $(s+t)^4$ を展開すると

このことと(3)における花子さんの考え方を用いると, x⁴を $x^2 - || r || x + || f || で割った余りの<math>x$ の係数は|| r || r であることがわか る。

の解答群

- ③ $p^4 + 8p^2q^2 + q^4$ ④ $p^4 8p^2q^2 + q^4$ ⑤ $p^4 + 8p^2q^2 q^4$

セー, ソーの解答群(同じものを繰り返し選んでもよい。)