xyz 空間に 3 点 O(0,0,0), A(1,0,1), $B(0,\sqrt{3},1)$ がある。平面 z=0 に含まれ,中心が O,半径が 1 の円を W とする。点 P が線分 OA 上を,点 Q が円 W の周および内部を動くとき, $\overrightarrow{OR} = \overrightarrow{OP} + \overrightarrow{OQ}$ をみたす点 R 全体が作る立体を V_A とおく。同様に点 P が線分 OB 上を,点 Q が円 W の周および内部を動くとき, $\overrightarrow{OR} = \overrightarrow{OP} + \overrightarrow{OQ}$ をみたす点 R 全体が作る立体を V_B とおく。さらに V_A と V_B の重なり合う部分を V とする。このとき,以下の問いに答えよ。

- (1) 平面 $z = \cos \theta \left(0 \le \theta \le \frac{\pi}{2} \right)$ による立体 V の切り口の面積を θ を用いて表せ.
- (2) 立体 V の体積を求めよ.

〔2012 阪大 理系 前期〕

〔解答例〕

(1) 平面 z=t $(0 \le t \le 1)$ における V の切り口の面積を S(t) とする. V_A の切り口は $\overrightarrow{OP_1}=t\overrightarrow{OA}=(t,0,t)$ が中心,半径 1 の円 V_B の切り口は $\overrightarrow{OP_2}=t\overrightarrow{OB}=(0,\sqrt{3},t)$ が中心,半径 1 の円 この 2 円の共有点を C, D とすると $t=\cos\theta$ として

$$P_1C = P_1D = P_2C = P_2D = 1,$$

$$P_1P_2=2\cos\theta$$

 $P_1P_2 \perp CD$ であり、2 線分 P_1P_2 、CD の交点を E とすると

$$\angle CP_1E = \angle DP_1E = \theta$$

$$CE = DE = \sin \theta$$

このことから

[平面をされるVa切りロをスト平面に正射影は図]

 $S(t) = 2 \times \{ (扇形 \, \text{CP}_1 \text{D} \, \text{の面積}) - (三角形 \, \text{CP}_1 \text{D} \, \text{の面積}) \}$ = $2 \left(\frac{1}{2} \cdot 1^2 \cdot 2\theta - \frac{1}{2} \cdot 2\sin\theta\cos\theta \right)$ = $2\theta - 2\sin\theta\cos\theta$

(2) V の体積は t=cosθ と 置換

$$\int_{0}^{1} S(t) dt = \int_{\frac{\pi}{2}}^{0} (2\theta - 2\sin\theta\cos\theta) \frac{dt}{d\theta} d\theta$$

$$= \int_{\frac{\pi}{2}}^{0} (2\theta - 2\sin\theta\cos\theta) (-\sin\theta) d\theta$$

$$= \int_{0}^{\frac{\pi}{2}} (2\theta\sin\theta - 2\cos\theta\sin^{2}\theta) d\theta$$

$$= \left[2\theta(-\cos\theta) + 2\sin\theta - \frac{2}{3}\sin^{3}\theta \right]_{0}^{\frac{\pi}{2}} = 2 - \frac{2}{3}$$

$$= \frac{4}{3}$$

