# 数学B 空間ベクトル

~高校数学のまとめ~

教科書をもとに定義や定理を独自にパネル形式でまとめています. 何度も書き直し、加筆修正を繰り返しており、完成したものではありません. 人によっては不要な部分もあるでしょう. そういうときは読み飛ばしてください.

© ささきまこむ

#### 座標空間

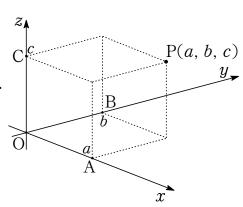
空間に点 〇をとり、〇で互いに直交する3つの座標軸を定める.

これらをそれぞれx軸,y軸,z軸 という.

また 〇 を 原点 という.

さらに

- $\square$  x軸とy軸で定まる平面をxy平面という.
- ② y軸とz軸で定まる平面をyz平面という.
- ③ z軸とx軸で定まる平面をzx平面という.
- <sup>ざひょう</sup> ①, ②, ③をまとめて 座標平面 という.



空間の点Pに対して、点Pを通り各座標軸に垂直な直線がx軸、y軸、z軸と交わる点を、それぞれA、B、Cとする.

A, B, Cの各座標軸上での座標がそれぞれ a, b, c のとき,

3つの実数の組(a,b,c)を点Pの座標といいP(a,b,c)とかく.

このとき a を x 座標, b を y 座標, c を z 座標 という.

 $\exists t \in O(0, 0, 0), A(a, 0, 0), B(0, b, 0), C(0, 0, c) \ \text{cbs}.$ 

ざひょうくうかん

座標軸の定められた空間を座標空間という.

とくに何も条件がないときは、座標空間の座標軸はx軸、y軸、z軸として考える.

#### 座標平面に平行な平面の方程式

#### 座標空間において

- $\square$  xy 平面の方程式は z=0
- ② yz 平面の方程式は x=0
- ③ zx 平面の方程式は y=0

z = c z = c z = 0 z = 0 z = 0 z = 0 z = 0 z = 0 z = 0

座標平面に平行な平面の方程式について

- ① xy 平面に平行でz軸上の点(0,0,c)を通る平面の方程式は z=c
- ② yz 平面に平行でx軸上の点(a, 0, 0)を通る平面の方程式はx = a
- ③ zx 平面に平行でy軸上の点(0,b,0)を通る平面の方程式はy=b



空間ベクトルも平面ベクトルと同じ性質をもつ.

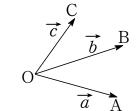
## 空間ベクトルの1次結合

3つのベクトルa, b, c に対し、実数s, t, u を用いて

 $\vec{sa} + \vec{tb} + \vec{uc}$  と表されることを  $\vec{a}$  と  $\vec{b}$  と  $\vec{c}$  の  $\vec{l}$  次結合 という.

#### 空間の1次独立なベクトル

3つのベクトル $\stackrel{\rightarrow}{a}$ ,  $\stackrel{\rightarrow}{b}$ ,  $\stackrel{\rightarrow}{c}$  が 1次独立であるとは次の条件を満たすことである.



- $\square$   $\overrightarrow{a}$ ,  $\overrightarrow{b}$ ,  $\overrightarrow{c}$  は同一平面上にない
- ②  $\overrightarrow{a} = \overrightarrow{OA}$ ,  $\overrightarrow{b} = \overrightarrow{OB}$ ,  $\overrightarrow{c} = \overrightarrow{OC}$  とおくと 4点 O, A, B, Cが同一平面上にない
- ③  $\vec{a} = \overrightarrow{OA}$ ,  $\vec{b} = \overrightarrow{OB}$ ,  $\vec{c} = \overrightarrow{OC}$  とおくと 四面体 OABC が存在する
- [4] 実数 x, y, zに対し  $\overrightarrow{xa} + y\overrightarrow{b} + z\overrightarrow{c} = \overrightarrow{0}$  ならば x = 0 かつ y = 0 かつ z = 0
- 補 1, 2, 3, 4 は同値
- (i)  $\vec{a} \neq \vec{0}$  かつ  $\vec{b} \neq \vec{0}$  かつ  $\vec{c} \neq \vec{0}$  かつ  $\vec{a} \not + \vec{b}$  かつ  $\vec{b} \not + \vec{c}$  かつ  $\vec{c} \not + \vec{a}$ 」とするのは間違い.
- (話) ④ が一般的な定義です。高校の教科書では定義していない

(定義している教科書が確認できてない)

## 1次独立な空間ベクトルの性質

 $\overrightarrow{a}$ ,  $\overrightarrow{b}$ ,  $\overrightarrow{c}$  は 1 次独立, x, y, z, s, t, u を実数として次が成り立つ.

$$\boxed{1} \ \overrightarrow{xa} + y\overrightarrow{b} + z\overrightarrow{c} = \overrightarrow{0} \iff \begin{cases} x = 0 \\ y = 0 \\ z = 0 \end{cases}$$

$$\begin{array}{ccc}
\boxed{1} & \overrightarrow{xa} + y\overrightarrow{b} + z\overrightarrow{c} = \overrightarrow{0} \iff \begin{cases} x = 0 \\ y = 0 \\ z = 0 \end{cases} \\
\boxed{2} & \overrightarrow{xa} + y\overrightarrow{b} + z\overrightarrow{c} = \overrightarrow{sa} + t\overrightarrow{b} + u\overrightarrow{c} \iff \begin{cases} x = s \\ y = t \\ z = u \end{cases}$$

#### 空間ベクトルの1次独立と1次結合

空間内の任意のベクトルpは、1次独立なベクトルa, b, c を用いて

$$\vec{p} = x\vec{a} + y\vec{b} + z\vec{c}$$
 (x, y, z は実数)

の形でただ1通りで表される.

#### 空間ベクトルの成分表示

座標空間において、点 O を原点、点  $E_1(1,0,0)$ 、 $E_2(0,1,0)$ 、 $E_3(0,0,1)$  とする x 軸、y 軸、z 軸の正の向きと同じ向きの単位ベクトルを

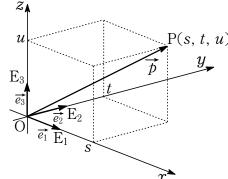
座標軸に関する基本ベクトルといい、それぞれ

$$\overrightarrow{e_1} = \overrightarrow{\mathrm{OE}_1}, \ \overrightarrow{e_2} = \overrightarrow{\mathrm{OE}_2}, \ \overrightarrow{e_3} = \overrightarrow{\mathrm{OE}_3}$$
とする.

このとき  $\overrightarrow{p} = \overrightarrow{\mathrm{OP}}$  となる点  $\mathrm{P}(s,\,t,\,u)$  をとると

$$\overrightarrow{p} = \overrightarrow{se_1} + \overrightarrow{te_2} + \overrightarrow{ue_3}$$

とただ1通りで表せて、これを基本ベクトル表示という.



さらに 
$$\overrightarrow{p}=(s,\,t,\,u)$$
 または  $\overrightarrow{p}=\begin{pmatrix} s \\ t \\ u \end{pmatrix}$  のように表し、

→ せいぶんひょうじ ベクトル pの 成分表示 という.

ここで  $s \in p$  の x 成分,  $t \in p$  の y 成分,  $u \in p$  の z 成分 という.

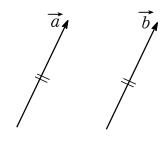
とくに  $\overrightarrow{0}$ ,  $\overrightarrow{e_1}$ ,  $\overrightarrow{e_2}$ ,  $\overrightarrow{e_3}$  の成分表示は

$$\vec{0} = (0, 0, 0), \ \vec{e_1} = (1, 0, 0), \ \vec{e_2} = (0, 1, 0), \ \vec{e_3} = (0, 0, 1)$$

## 成分表示された空間ベクトルの相当

$$\overrightarrow{a} = (a, b, c), \overrightarrow{b} = (x, y, z)$$
 のとき

$$\vec{a} = \vec{b} \iff \begin{cases} a = x \\ b = y \\ c = z \end{cases}$$



## 成分表示された空間ベクトルの大きさ

$$\overrightarrow{a}=(a,b,c)$$
 のとき 
$$\overrightarrow{a}$$
 の大きさは  $|\overrightarrow{a}|=\sqrt{a^2+b^2+c^2}$  つまり  $(\overrightarrow{a}$  の大きさ  $)=\sqrt{(x\,\mathrm{成} \beta)^2+(y\,\mathrm{成} \beta)^2+(z\,\mathrm{成} \beta)^2}$ 

例 
$$\vec{a} = (3, 4, 5)$$
 のとき  $|\vec{a}| = \sqrt{3^2 + 4^2 + 5^2} = \sqrt{50} = 5\sqrt{2}$ 

#### 成分表示された空間ベクトルの和・差・実数倍

$$\square \stackrel{\rightarrow}{a} = (a, b, c), \stackrel{\rightarrow}{b} = (x, y, z), k$$
は実数 のとき

$$\Re : \overrightarrow{a} + \overrightarrow{b} = (a, b, c) + (x, y, z) = (a + x, b + y, c + z)$$

差:
$$\vec{a} - \vec{b} = (a, b, c) - (x, y, z) = (a - x, b - y, c - z)$$

実数倍:
$$ka = k(a, b, c) = (ka, kb, kc)$$

$$\boxed{2} \stackrel{\rightarrow}{a} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}, \stackrel{\rightarrow}{b} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, k は実数 のとき$$

和:
$$\vec{a}$$
+ $\vec{b}$ = $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ + $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ = $\begin{pmatrix} a+x \\ b+y \\ c+z \end{pmatrix}$ 

実数倍:
$$k\overset{\rightarrow}{a} = k \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} ka \\ kb \\ kc \end{pmatrix}$$

- (補) ① が教科書の書き方である. 横のベクトルなので横ベクトル (行ベクトル)という.
  - 2 は縦のベクトルなので縦ベクトル (列ベクトル)という.

どちらで計算しても同じことなので, 自由に使えばよい.

## 座標空間のベクトルの成分表示と大きさ(2点間の距離)

座標空間の2点A(a, b, c), B(s, t, u)のとき

- $\overrightarrow{AB}$  の成分表示は  $\overrightarrow{AB} = (s a, t b, u c)$
- ②  $\overrightarrow{AB}$  の大きさは  $|\overrightarrow{AB}| = \sqrt{(s-a)^2 + (t-b)^2 + (u-c)^2}$  つまり

 $(2 点 A, B の距離) = \sqrt{(x 座標の差)^2 + (y 座標の差)^2 + (z 座標の差)^2}$ 

圏 点 O(0, 0, 0) として  $\overrightarrow{OA} = (a, b, c)$ ,  $\overrightarrow{OB} = (s, t, u)$   $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (s - a, t - b, u - c)$ 

## 空間ベクトルの展開

x, y, zを実数として

$$|\overrightarrow{xa} + \overrightarrow{yb} + \overrightarrow{zc}|^2$$

$$= x^{2} |\vec{a}|^{2} + y^{2} |\vec{b}|^{2} + z^{2} |\vec{c}|^{2} + 2xy \vec{a} \cdot \vec{b} + 2yz \vec{b} \cdot \vec{c} + 2zx \vec{c} \cdot \vec{a}$$

$$|\overrightarrow{xa} + y\overrightarrow{b} + z\overrightarrow{c}|^{2}$$

$$= (x\overrightarrow{a} + y\overrightarrow{b} + z\overrightarrow{c}) \cdot (x\overrightarrow{a} + y\overrightarrow{b} + z\overrightarrow{c})$$

$$= x^{2}\overrightarrow{a} \cdot \overrightarrow{a} + xy\overrightarrow{a} \cdot \overrightarrow{b} + xz\overrightarrow{a} \cdot \overrightarrow{c} + xy\overrightarrow{b} \cdot \overrightarrow{a} + y^{2}\overrightarrow{b} \cdot \overrightarrow{b} + zx\overrightarrow{c} \cdot \overrightarrow{a} + zy\overrightarrow{c} \cdot \overrightarrow{b} + z^{2}\overrightarrow{c} \cdot \overrightarrow{c}$$

$$= x^{2} |\overrightarrow{a}|^{2} + y^{2} |\overrightarrow{b}|^{2} + z^{2} |\overrightarrow{c}|^{2} + 2xy |\overrightarrow{a} \cdot \overrightarrow{b} + 2yz |\overrightarrow{b} \cdot \overrightarrow{c} + 2zx |\overrightarrow{c} \cdot \overrightarrow{a}|$$

### 成分表示された空間ベクトルの内積

$$\vec{a}=(a,\,b,\,c),\; \vec{b}=(x,\,y,\,z)$$
 のとき  
内積  $\vec{a}\cdot\vec{b}=ax+by+cz$ 

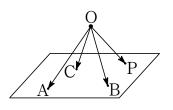
- 河 平面のときと同様に余弦定理から示せる.

#### 共面条件

同一直線上にない異なる3点A, B, Cがあり,

点Oは平面ABC上にない点とする.

点 P が平面 ABC 上に存在する条件は次である.



$$\overrightarrow{AP} = s \overrightarrow{AB} + t \overrightarrow{AC}$$
 となる実数  $s, t$  が存在する.

② 
$$\overrightarrow{OP} = \overrightarrow{OA} + s \overrightarrow{AB} + t \overrightarrow{AC}$$
 となる実数  $s$ ,  $t$  が存在する.

③ 
$$\overrightarrow{OP} = (1 - s - t)\overrightarrow{OA} + s\overrightarrow{AB} + t\overrightarrow{AC}$$
 となる実数  $s, t$  が存在する.

$$\overrightarrow{OP} = x\overrightarrow{OA} + y\overrightarrow{OB} + z\overrightarrow{OC}$$
 かっ  $x + y + z = 1$   
となる実数  $x$ ,  $y$ ,  $z$  が存在する.

考 
$$\boxed{1}$$
  $\overrightarrow{AB}$  と  $\overrightarrow{AC}$  で張られる平面上に点  $P$  がある.

$$\overrightarrow{2} \overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP} = \overrightarrow{OA} + s \overrightarrow{AB} + t \overrightarrow{AC}$$
 (:1)

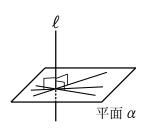
③ ① で始点を O とすると 
$$\overrightarrow{OP} - \overrightarrow{OA} = s(\overrightarrow{OB} - \overrightarrow{OA}) + t(\overrightarrow{OC} - \overrightarrow{OA})$$
 すなわち  $\overrightarrow{OP} = (1 - s - t)\overrightarrow{OA} + s\overrightarrow{AB} + t\overrightarrow{AC}$ 

4 ③で
$$1-s-t=x$$
,  $s=y$ ,  $t=z$  とおくと  $x+y+z=(1-s-t)+s+t=1$ 

#### 平面と直線が垂直

平面  $\alpha$  と直線  $\ell$  について

直線 $\ell$ が平面 $\alpha$ 上のすべての直線に垂直であるとき $\ell$ と $\alpha$ は垂直であるといい $\alpha \perp \ell$ とかく.

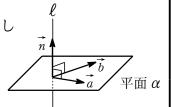


#### 平面と直線が垂直な条件

平面  $\alpha$  上にある任意の 1 次独立な 2 つのベクトルを a , b とし

直線 $\ell$ の方向ベクトルをnとすると

$$\alpha \perp \ell \iff \overrightarrow{a} \perp \overrightarrow{n} \text{ in } \overrightarrow{b} \perp \overrightarrow{n}$$



#### 

平面  $\alpha \perp \ell$  ならば、平面  $\alpha$  上の任意の  $\overset{\rightarrow}{0}$  でないベクトルが  $\overset{\rightarrow}{n}$  に垂直であることから  $\overset{\rightarrow}{a} \perp \overset{\rightarrow}{n}$  かつ  $\overset{\rightarrow}{b} \perp \overset{\rightarrow}{n}$ 

 $(\Leftarrow \texttt{kont})$ 

$$\overrightarrow{a} \perp \overrightarrow{n}$$
 かつ  $\overrightarrow{b} \perp \overrightarrow{n}$  ならば  $\overrightarrow{a} \cdot \overrightarrow{n} = 0$  かつ  $\overrightarrow{b} \cdot \overrightarrow{n} = 0$  ……①

平面  $\alpha$  上に異なる 2 点 P, Q をとり, さらに 1 点 O をとると

$$\overrightarrow{OP} = s\overrightarrow{a} + t\overrightarrow{b}$$

$$\overrightarrow{OQ} = s' \overrightarrow{a} + t' \overrightarrow{b}$$

となる実数 s, t, s', t' が存在し

$$\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP} = (s' - s)\overrightarrow{a} + (t' - t)\overrightarrow{b}$$

と表わせる.

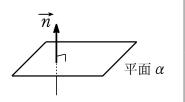
これより 
$$\overrightarrow{PQ} \cdot \overrightarrow{n} = (s'-s)\overrightarrow{a} \cdot \overrightarrow{n} + (t'-t)\overrightarrow{b} \cdot \overrightarrow{n} = 0$$
 (∵①)

よって 
$$\overrightarrow{PQ} \neq \overrightarrow{0}$$
 かつ  $\overrightarrow{n} \neq \overrightarrow{0}$  より  $\overrightarrow{PQ} \perp \overrightarrow{n}$ 

すなわち α ⊥ ℓ

#### 平面の法線ベクトル

平面 $\alpha$ 上の0以外の任意のベクトルと垂直になるnを平面 $\alpha$ の 法線ベクトル という.



注 平面には法線ベクトルが必ず存在する.

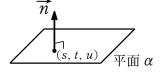
#### 平面の方程式

 $(a, b, c) \neq (0, 0, 0) \ge 5$ .

座標空間で点(s, t, u)を通り、法線ベクトルの1つが $\stackrel{\rightarrow}{n} = (a, b, c)$ 

である平面の方程式は

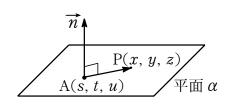
$$a(x-s) + b(y-t) + c(z-u) = 0$$



すなわち

$$ax + by + cz + d = 0$$
 ただし  $d = -as - bt - cz$ 

圏 点 A(s, t, u), 平面上の点を P(x, y, z) とすると  $\overrightarrow{AP} = (x - s, y - t, z - u)$   $\overrightarrow{n} \perp \overrightarrow{AP}$  または  $\overrightarrow{AP} = \overrightarrow{0}$  であるから  $\overrightarrow{n} \cdot \overrightarrow{AP} = 0$  これより a(x - s) + b(y - t) + c(z - u) = 0 展開して ax + by + cz - as - bt - cu = 0 -as - bt - cu = d として ax + by + cz + d = 0



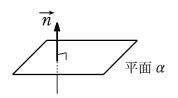
#### 座標空間での平面と法線ベクトル

(a, b, c)  $\neq$  (0, 0, 0), a, b, c, d は定数とする.

座標空間で平面 α の方程式が

$$\alpha : ax + by + cz + d = 0$$

ならば n = (a, b, c) は $\alpha$ の法線ベクトルの1つ.



#### 平面の方程式の一般形

座標空間の平面の方程式の一般形は

$$ax + by + cz + d = 0$$

ただし a, b, c, d は定数,  $(a, b, c) \neq (0, 0, 0)$ 

## x切片, y切片, z切片がわかる平面の方程式

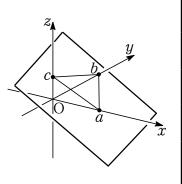
 $a \neq 0$ ,  $b \neq 0$ ,  $c \neq 0$  とする.

x切片がa, y切片がb, z切片cの平面

つまり 3点(a,0,0),(0,b,0),(0,0,c)を通る平面

の方程式は

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$



例 座標空間で 3点 (3,0,0), (0,2,0), (0,0,1) を通る平面の方程式は  $\frac{x}{3} + \frac{y}{2} + z = 1 \quad \text{tabs} \quad 2x + 3y + 6z = 6$ 

#### 点と平面の距離

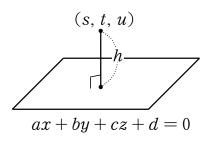
 $(a, b, c) \neq (0, 0, 0), a, b, c, d$  は定数とする.

座標空間において

点 (s, t, u) と平面:ax + by + cz + d = 0

の距離をhとすると

$$h = \frac{|as + bt + cu + d|}{\sqrt{a^2 + b^2 + c^2}}$$



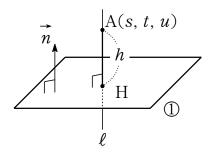
## 孝) 平面: ax + by + cz + d = 0 ……①

A(s, t, u) とおき、点 A を通り ① に垂直な直線を  $\ell$  とし、  $\ell$  と ① の交点を H とする.  $\vec{n} = (a, b, c)$  とすると  $\vec{n}$  は ① の法線ベクトルである.

$$\overrightarrow{n}$$
 //  $\overrightarrow{AH}$  または  $\overrightarrow{AH} = \overrightarrow{0}$  より実数  $k$  が存在し

$$\overrightarrow{AH} = k \overrightarrow{n} \cdots 2$$

と表せる.



点Hは①上にあるので

$$a(s + ak) + b(t + bk) + c(u + ck) + d = 0$$

すなわち 
$$(a^2+b^2+c^2)k = -(as+bt+cu+d)$$

$$a^2 + b^2 + c^2 \neq 0$$
 であるから  $k = -\frac{as + bt + cu + d}{a^2 + b^2 + c^2}$  ……③

また 
$$|\vec{n}| = \sqrt{a^2 + b^2 + c^2}$$
 ……④

② から 
$$h = |\overrightarrow{AH}| = |k||\overrightarrow{n}|$$
  

$$= \frac{|as + bt + cu + d|}{a^2 + b^2 + c^2} \cdot \sqrt{a^2 + b^2 + c^2} \quad (:: ③, ④)$$

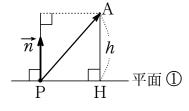
$$= \frac{|as + bt + cu + d|}{\sqrt{a^2 + b^2 + c^2}}$$

別 平面上に点 P(p,q,r) をとると ① 上にあるから ap+bq+cz+d=0 ……①  $\overrightarrow{PA}=(s-p,t-q,u-r)$ 

$$\overrightarrow{PA} \cdot \overrightarrow{n} = a(s-p) + b(t-q) + c(u-r) = as + bt + cu - (ap + bq + cr)$$
$$= as + bt + cr + d \quad (\because \textcircled{1}')$$

 $\overrightarrow{PA}$  の $\overrightarrow{n}$  上への正射影ベクトル  $\frac{\overrightarrow{PA} \cdot \overrightarrow{n}}{|\overrightarrow{n}|^2} \overrightarrow{n}$  の大きさが h なので

$$h = \left| \frac{\overrightarrow{PA} \cdot \overrightarrow{n} \overrightarrow{n}}{|\overrightarrow{n}|^2} \overrightarrow{n} \right| = \frac{|\overrightarrow{PA} \cdot \overrightarrow{n}|}{|\overrightarrow{n}|} = \frac{|as + bt + cu + d|}{\sqrt{a^2 + b^2 + c^2}}$$



補 点と直線の距離も同じように示せる.

#### ベクトルの外積

座標空間において

$$\overrightarrow{OA} = (a, b, c)$$

$$\overrightarrow{\mathrm{OB}} = (x, y, z)$$

のとき

$$\overrightarrow{OA} \times \overrightarrow{OB} = (bz - cy, cx - az, ay - bx)$$

 $\overrightarrow{OA}$  と  $\overrightarrow{OB}$  の 外積 という.

- (補) 内積は実数値だが、外積はベクトルになる.
- 説 右上図のように  $\overrightarrow{OA}$  と  $\overrightarrow{OB}$  の各成分を書き出して,x 成分は 1 列目と 4 列目に書く. 番号の順にたすきにかけて引く (左上×右下 -右上×左下) ことで外積の成分が求まる. ① が x 成分,② が y 成分,③ が z 成分になる.

 $\overrightarrow{OA} \times \overrightarrow{OB}$ 

## ベクトルの外積の性質

 $\overrightarrow{OA}$  と  $\overrightarrow{OB}$  は 1 次独立とする.

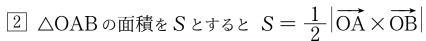
 $\overrightarrow{OA}$  と  $\overrightarrow{OB}$  の外積について、次の性質が成り立つ.

$$\square \overrightarrow{OB} \times \overrightarrow{OA} = -(\overrightarrow{OA} \times \overrightarrow{OB})$$

 $\overrightarrow{OA} = (a, b, 0)$  $\overrightarrow{OB} = (x, y, 0)$ 

これは平面での三角形の面積公式

とすると  $S = \frac{1}{2}\sqrt{(ay - bx)^2} = \frac{1}{2}|ay - bx|$ 



$$\boxed{3} \left(\overrightarrow{OA} \times \overrightarrow{OB}\right) \perp \overrightarrow{OA} \text{ by } \left(\overrightarrow{OA} \times \overrightarrow{OB}\right) \perp \overrightarrow{OB}$$

すなわち  $(\overrightarrow{OA} \times \overrightarrow{OB})$   $\bot$  平面 OAB

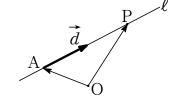
#### 直線のベクトル方程式

座標空間において

点  $\mathbf{A}(a,b,c)$  を通り、方向ベクトルが $\overrightarrow{d}=(p,q,r)$  の直線を $\ell$ とする.

 $\ell$ 上の点をP(x,y,z)とすると, tを実数として

$$\overrightarrow{\mathrm{OP}} = \overrightarrow{\mathrm{OA}} + t \, \overrightarrow{d} \quad \text{this} \quad \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} + t \begin{pmatrix} p \\ q \\ r \end{pmatrix}$$



 $1 p \neq 0, q \neq 0, r \neq 0$  のとき

$$\ell: \frac{x-a}{p} = \frac{y-b}{q} = \frac{z-c}{r}$$

 $\boxed{2} p \neq 0, q \neq 0, r = 0 \text{ obs}$ 

点 
$$\mathbf{A}(a,b,c)$$
 を通り、方向ベクトルが  $\overrightarrow{d}=(p,q,0)$  の直線で  $\ell:\frac{x-a}{p}=\frac{y-b}{q}$ 、 $z=c$ ( $xy$  平面に平行な直線)

 $3 p \neq 0, q = 0, r \neq 0$  のとき

点 
$$\mathbf{A}(a,b,c)$$
 を通り、方向ベクトルが $\overrightarrow{d}=(p,0,r)$  の直線で  $\ell:\frac{x-a}{p}=\frac{z-c}{r},\,y=b\,(zx\,$ 平面に平行な直線)

 $4 p = 0, q \neq 0, r \neq 0$  のとき

点 
$$\mathbf{A}(a,b,c)$$
 を通り、方向ベクトルが  $\overrightarrow{d}=(0,q,r)$  の直線で  $\ell:\frac{y-b}{a}=\frac{z-c}{r}, \ x=a \ (yz$  平面に平行な直線 )

- ⑤  $p \neq 0$ , q = 0, r = 0 のとき 点 A(a, b, c) を通り、方向ベクトルが $\overrightarrow{d} = (p, 0, 0)$  の直線で  $\ell : y = b, z = c$  (x 軸に平行な直線)
- ⑤  $p=0,\ q \neq 0,\ r=0$  のとき 点 A(a,b,c) を通り、方向ベクトルが $\overrightarrow{d}=(0,q,0)$  の直線で  $\ell: x=a,\ z=c$  (y軸に平行な直線)
- $\boxed{1} p = 0, \ q = 0, \ r \neq 0$  のとき 点 A(a,b,c) を通り、方向ベクトルが $\overrightarrow{d} = (0,0,r)$  の直線で  $\ell: x = a, \ y = b \ (z$ 軸に平行な直線)

## 球面の方程式

中心が点 (a,b,c),半径 r の球面の方程式は

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$$

## ベクトルでの3次元のコーシー・シュワルツの不等式

$$\overrightarrow{p} = (a, b, c), \overrightarrow{q} = (x, y, z) \text{ obs}$$

$$(\overrightarrow{p} \cdot \overrightarrow{q})^2 \le |\overrightarrow{p}|^2 |\overrightarrow{q}|^2$$

つまり

$$(ax + by + cz)^2 \le (a^2 + b^2 + c^2)(x^2 + y^2 + z^2)$$

等号が成り立つのは 
$$\stackrel{\rightarrow}{p}=\stackrel{\rightarrow}{0}$$
 または  $\stackrel{\rightarrow}{q}=\stackrel{\rightarrow}{0}$  または  $\stackrel{\rightarrow}{p}/\hspace{-0.1cm}/\hspace{-0.1cm}q$ 

すなわち 
$$(a, b, c) = (0, 0, 0)$$
 または  $(x, y, z) = (0, 0, 0)$ 

$$\texttt{stable} \ a : b : c = x : y : z$$

© ささきまこむ